

Deutsche Akkreditierungsstelle GmbH

Beliehene gemäß § 8 Absatz 1 AkkStelleG i.V.m. § 1 Absatz 1 AkkStelleGBV Unterzeichnerin der Multilateralen Abkommen von EA, ILAC und IAF zur gegenseitigen Anerkennung

Akkreditierung

Die Deutsche Akkreditierungsstelle GmbH bestätigt hiermit, dass das Prüflaboratorium

Atotech Deutschland GmbH & Co. KG

an den Standorten

Analytics und Materials Science, Erasmusstraße 20, 10553 Berlin Analytiklabor, Ahornallee 4, 16818 Werder Analytics und Materials Science, Untergasse 47, 65468 Trebur-Geinsheim

die Kompetenz nach DIN EN ISO/IEC 17025:2018 besitzt, Prüfungen in folgenden Bereichen durchzuführen:

physikalische, physikalisch-chemische und chemische Untersuchung von Prozesswässern und Abwasser:

Probenahme von Abwasser;

chemische Untersuchung von Industriechemikalien, Salzlösungen, Metalllösungen und Galvanikbädern mittels chromatographischer, spektrometrischer und titrimetrischer Verfahren:

metallographische Prüfungen, zerstörungsfreie Schichtdickenbestimmungen, chemischphysikalische Prüfungen, Korrosionsuntersuchungen und mechanisch-technologische Prüfungen an Schichten, Schichtsystemen, Werkstoffen und/bzw. beschichteten Präparaten; physikalische Untersuchungen von wässrigen und organischen Lacksystemen

Die Akkreditierungsurkunde gilt nur in Verbindung mit dem Bescheid vom 28.03.2022 mit der Akkreditierungsnummer D-PL-14564-01. Sie besteht aus diesem Deckblatt, der Rückseite des Deckblatts und der folgenden Anlage mit insgesamt 15 Seiten.

Registrierungsnummer der Urkunde: D-PL-14564-01-00

Berlin, 28.03.2022

Im Auftrag Dr. Heike Manke Abteilungsleiterin

Die Urkunde samt Urkundenanlage gibt den Stand zum Zeitpunkt des Ausstellungsdatums wieder. Der jeweils aktuelle Stand des Geltungsbereiches der Akkreditierung ist der Datenbank akkreditierter Stellen der Deutschen Akkreditierungsstelle GmbH (DAkkS) zu entnehmen. https://www.dakks.de/de/akkreditierte-stellen-suche.html

Deutsche Akkreditierungsstelle GmbH

Standort Berlin Spittelmarkt 10 10117 Berlin Standort Frankfurt am Main Europa-Allee 52 60327 Frankfurt am Main Standort Braunschweig Bundesallee 100 38116 Braunschweig

Die auszugsweise Veröffentlichung der Akkreditierungsurkunde bedarf der vorherigen schriftlichen Zustimmung der Deutsche Akkreditierungsstelle GmbH (DAkkS). Ausgenommen davon ist die separate Weiterverbreitung des Deckblattes durch die umseitig genannte Konformitätsbewertungsstelle in unveränderter Form.

Es darf nicht der Anschein erweckt werden, dass sich die Akkreditierung auch auf Bereiche erstreckt, die über den durch die DAkkS bestätigten Akkreditierungsbereich hinausgehen.

Die Akkreditierung erfolgte gemäß des Gesetzes über die Akkreditierungsstelle (AkkStelleG) vom 31. Juli 2009 (BGBl. I S. 2625) sowie der Verordnung (EG) Nr. 765/2008 des Europäischen Parlaments und des Rates vom 9. Juli 2008 über die Vorschriften für die Akkreditierung und Marktüberwachung im Zusammenhang mit der Vermarktung von Produkten (Abl. L 218 vom 9. Juli 2008, S. 30). Die DAkkS ist Unterzeichnerin der Multilateralen Abkommen zur gegenseitigen Anerkennung der European co-operation for Accreditation (EA), des International Accreditation Forum (IAF) und der International Laboratory Accreditation Cooperation (ILAC). Die Unterzeichner dieser Abkommen erkennen ihre Akkreditierungen gegenseitig an.

Der aktuelle Stand der Mitgliedschaft kann folgenden Webseiten entnommen werden:

EA: www.european-accreditation.org

ILAC: www.ilac.org IAF: www.iaf.nu

Deutsche Akkreditierungsstelle GmbH

Anlage zur Akkreditierungsurkunde D-PL-14564-01-00 nach DIN EN ISO/IEC 17025:2018

Gültig ab:

28.03.2022

Ausstellungsdatum: 28.03.2022

Urkundeninhaber:

Atotech Deutschland GmbH & Co. KG

an den Standorten

Analytics und Materials Science, Erasmusstraße 20, 10553 Berlin Analytiklabor, Ahornallee 4, 16818 Werder Analytics und Materials Science, Untergasse 47, 65468 Trebur-Geinsheim

Prüfungen in den Bereichen:

physikalische, physikalisch-chemische und chemische Untersuchung von Prozesswässern und Abwasser;

Probenahme von Abwasser;

chemische Untersuchung von Industriechemikalien, Salzlösungen, Metalllösungen und Galvanikbädern mittels chromatographischer, spektrometrischer und titrimetrischer Verfahren; metallographische Prüfungen, zerstörungsfreie Schichtdickenbestimmungen, chemischphysikalische Prüfungen, Korrosionsuntersuchungen und mechanisch-technologische Prüfungen an Schichten, Schichtsystemen, Werkstoffen und/bzw. beschichteten Präparaten; physikalische Untersuchungen von wässrigen und organischen Lacksystemen

Die Anforderungen an das Managementsystem in der DIN EN ISO/IEC 17025 sind in einer für Prüflaboratorien relevanten Sprache verfasst und stehen insgesamt in Übereinstimmung mit den Prinzipien der DIN EN ISO 9001.

Die Urkunde samt Urkundenanlage gibt den Stand zum Zeitpunkt des Ausstellungsdatums wieder. Der jeweils aktuelle Stand des Geltungsbereiches der Akkreditierung ist der Datenbank akkreditierter Stellen der Deutschen Akkreditierungsstelle GmbH (DAkkS) zu entnehmen. https://www.dakks.de/de/akkreditierte-stellen-suche.html

Verwendete Abkürzungen: siehe letzte Seite

Seite 1 von 15

Innerhalb der mit */** gekennzeichneten Prüfbereiche ist dem Prüflaboratorium, ohne dass es einer Vorherigen Information und Zustimmung der DAkkS bedarf,

*) die freie Auswahl von genormten oder ihnen gleichzusetzenden Prüfverfahren gestattet.

Dem Prüflaboratorium am Standort Werder (Neuruppin) ist, ohne dass es einer vorherigen Information und Zustimmung der DAkkS bedarf, die Anwendung von Hausverfahren des Standorts Berlin in den Prüfbereichen 3.1, 3.3 - 3.7 sowie 3.9 - 3.10 gestattet.

Die aufgeführten Prüfverfahren sind beispielhaft.

Dem Prüflaboratorium ist, ohne dass es einer vorherigen Information und Zustimmung der DAkkS bedarf, die Anwendung der hier aufgeführten genormten oder ihnen gleichzusetzenden Prüfverfahren mit unterschiedlichen Ausgabeständen gestattet, ausgenommen hiervon ist das Kapitel 5.

Das Prüflaboratorium verfügt über eine aktuelle Liste aller Prüfverfahren im flexiblen Akkreditierungsbereich.

Die Prüfverfahren sind mit den nachfolgend aufgeführten Symbolen der Standorte gekennzeichnet, an denen sie durchgeführt werden.

B = Atotech Deutschland GmbH & Co. KG, Standort Berlin

NP = Atotech Deutschland GmbH & Co. KG, Standort Werder (Neuruppin)

TR = Atotech Deutschland GmbH & Co. KG, Standort Trebur

1 Untersuchung von Prozesswässern und Abwasser

1.1 Probenahme und Probenvorbereitung

DIN 38402-A 11 2009-02	Probenahme von Abwasser	B, TR
DIN EN ISO 5667-3 (A 21) 2019-07	Wasserbeschaffenheit - Probenahme - Teil 3: Konservierung und Handhabung von Wasserproben	B, TR
DIN 38402-A 30 1998-07	Vorbehandlung, Homogenisierung und Teilung heterogener Wasserproben	B, TR

^{**)} die Modifizierung sowie Weiter- und Neuentwicklung von Prüfverfahren gestattet.

1.2 Physikalische und physikalisch-chemische Kenngrößen			
DIN EN ISO 10523 (C 5) 2012-04	Wasserbeschaffenheit - Bestimmung des pH-Werts	B, NP, TR	
DIN EN 27888 (C 8) 1993-11	Wasserbeschaffenheit - Bestimmung der elektrischen Leitfähigkeit	B, NP, TR	
1.3 Anionen			
DIN EN ISO 10304-1 (D 20) 2009-07	Wasserbeschaffenheit - Bestimmung von gelösten Anionen mittels Flüssigkeits-Ionenchromatographie - Teil 1: Bestimmung von Bromid, Chlorid, Fluorid, Nitrat, Nitrit, Phosphat und Sulfat	B, NP	
DIN 38405-D 24 1987-05	Photometrische Bestimmung von Chrom(VI) mittels 1,5-Diphenylcarbazid	B, TR	
DIN 38405-D 27 2017-10	Bestimmung von Sulfid durch Gasextraktion (Einschränkung: nur das Verfahren DIN 38405 - D 27-1 Bestimmung von leicht freisetzbarem Sulfid)	В	
Hach LCK 315 2013-04	Cyanid Küvetten-Test, 0,01-0,6 mg/L CN (LCK 315)	B, NP, TR	
Hach LCK 313 2019-10	Chrom (III und VI) Küvetten-Test, 0,03-1,0 mg/L Cr (LCK 313)	TR	
Hach LCK 353 2019-10	Sulfat Küvetten-Test, 150-900 mg/L SO₄ (LCK 353)	NP	
Hach LCK 350 2019-03	Phosphat (ortho/gesamt) Küvetten-Test, 2,0-20,0 mg/L PO_4 -P (LCK 350)	NP	
1.4 Kationen			
DIN EN ISO 11885 (E 22) 2009-09	Wasserbeschaffenheit - Bestimmung von ausgewählten Elementen durch induktiv gekoppelte Plasma-Atom- Emissionsspektrometrie (ICP-OES)	B, NP, TR	
DIN EN ISO 17294-2 (E 29) 2017-01	Wasserbeschaffenheit - Anwendung der induktiv gekoppelten Plasma-Massenspektrometrie (ICP-MS) - Teil 2: Bestimmung von ausgewählten Elementen einschließlich Uran-Isotope	В	

Gültig ab: 28.03.2022 Ausstellungsdatum: 28.03.2022

Seite 3 von 15

NP, TR Hach LCK 303 Ammonium Küvetten-Test, 2,0-47,0 mg/L NH₄-N

2019-10 (LCK303)

1.5 Summenparameter

Wasseranalytik - Anleitungen zur Bestimmung des gesamten В DIN EN 1484 (H 3)

organischen Kohlenstoffs (TOC) und des gelösten organischen 2019-04

Kohlenstoffs (DOC)

(Einschränkung: nur partikelfreie Proben DOC)

CSB Küvetten-Test 0-1000 mg/L O2 B, NP Hach LCI 400

(LCI 400/500) 2019-10

NP, TR Hach LCK 410 Freies Chlor Küvetten-Test, 0,05-2,0 mg/L Cl2

2013-04 (LCK410)

2 Metallische Schichten und Überzüge

B, TR Metallische und andere anorganische Überzüge -**DIN EN ISO 3613**

Chromatierüberzüge auf Zink, Cadmium, Aluminium-Zink- und 2011-04

Zink-Aluminium-Legierungen - Prüfverfahren

DIN EN 1811 Referenzprüfverfahren zur Bestimmung der Nickellässigkeit В

von sämtlichen Stäben, die in durchstochene Körperteile 2015-10

eingeführt werden und Erzeugnissen, die unmittelbar und

länger mit der Haut in Berührung kommen

B, TR **DIN EN 62321** Produkte in der Elektrotechnik - Bestimmung von

Bestandteilen der sechs Inhaltsstoffe (Blei, Quecksilber, 2009-12; VDE 0042-1 Cadmium, sechswertiges Chrom, polybromiertes Biphenyl, polybromierter Diphenylether), die einer Beschränkung 2009-12

unterworfen sind (Einschränkung: nur für Blei, Chrom, Cadmium und

sechswertiges Chrom)

Verfahren zur Bestimmung von bestimmten Substanzen in DIN EN 62321-3-1

Produkten der Elektrotechnik - Teil 3-1: Screening -2014-10;

VDE 0042-1-3-1 Blei, Quecksilber, Cadmium, Gesamtchrom und Gesamtbrom

2014-10 durch Röntgenfluoreszenz-Spektrometrie

Gültig ab: 28.03.2022 Ausstellungsdatum: 28.03.2022

Seite 4 von 15

В

DIN EN 62321-5 2014-10; VDE 0042-1-5 2014-10	Verfahren zur Bestimmung von bestimmten Substanzen in Produkten der Elektrotechnik - Teil 5: Cadmium, Blei und Chrom in Polymeren und Elektronik und Cadmium und Blei in Metallen mit AAS, AFS, ICP-OES und ICP-MS (Einschränkung: <i>nur ICP-OES</i>)	B, TR
DIN EN 62321-7-1 2016-09; VDE 0042-1-7-1 2016-09	Verfahren zur Bestimmung von bestimmten Substanzen in Produkten der Elektrotechnik - Teil 7-1: Bestimmung des Vorliegens von sechswertigem Chrom (Cr(VI)) in farblosen und farbigen Korrosionsschutzüberzügen auf Metallen durch das kolorimetrische Verfahren	B, TR

3 Untersuchung von Industriechemikalien

3.1 Titrimetrische Bestimmung von Elementen und Anionen in Salzlösungen, Metalllösungen und Galvanikbädern (** B und TR)

AV-A0000364 2018-10	Bestimmung von Nickel im Nickel-Elektrolyt mittels Komplexometrie	B, NP
AV-A0000410 2015-06	Bestimmung von Kupfer im Kupfer-Elektrolyt mittels Komplexometrie	B, NP
AV-A0000350 2011-03	Bestimmung von Cr(VI) im Chrom-Elektrolyt und Beizen mittels Redox-Titration	B, NP
AV-A0000430 2010-12	Bestimmung von Cr(VI) im Chrom-Elektrolyt und Beizen mittels Redox-Titration	В
PV-11321TIT 2009-01	Bestimmung von Sn(II) im Aktivator mittels Redox-Titration	B, NP
AV-A0000082 2011-03	Bestimmung von Natriumhypophosphit im Nickel-Elektrolyt mittels Redox-Titration	B, NP
AV-A0000480 2018-10	Bestimmung von Chlorid im Nickel-Elektrolyt mittels Fällungstitration	B, NP
AV-A0000353 2011-03	Bestimmung von Chlorid im sauren Zink-Elektrolyt mittels Fällungstitration	B, NP, TR
AV-A0000412 2018-10	Bestimmung des Gehaltes an Chlorid im Kupfer-Elektrolyt mittels Fällungstitration	B, NP

Gültig ab:

28.03.2022

Ausstellungsdatum: 28.03.2022

AV-A0000026 2013-12	Bestimmung von Schwefelsäure im Kupfer-Elektrolyt mittels Alkalimetrie	B, NP
AV-A0000352 2018-10	Bestimmung von Borsäure im Zink- oder Nickel-Elektrolyt mittels Alkalimetrie	B, NP, TR
AV-A0000398 2019-08	Bestimmung von Natronlauge im Zink- oder Zink/Nickel- Elektrolyt mittels Acidimetrie	B, NP, TR
AV-A0001447 2018-03	Bestimmung von Netzmittel im Cleaner mittels Tensid-Titration	В
PV-9289-TIT 2017-02	Bestimmung von Netzmittel im Conditioner mittels Tensid- Titration	В
AV-A0000284 2011-06	Bestimmung von Gesamtsäure in Zinn-Elektrolyt mittels Alkalimetrie	NP
3.2 Bestimmung von organischen Inhaltsstoffen in Salzlösungen, Metalllösungen und Galvanikbädern mittels Gaschromatographie mit konventionellem Detektor (FID) **		
PV-10595GC 2019-01	Ethylenglykol und Diethylenglykol-monobutylether (Butyldiglykol) im Queller mittels GC-FID	В
PV-14215GC 2019-01	Diethylenglykol-monobutylether im Ätzreiniger mittels GC-FID	В
3.3 Ionenchromatographische Bestimmung von organischen und anorganischen Inhaltsstoffen in Salzlösungen, Metalllösungen und Galvanikbädern (** B)		
PV-9796-IC 2019-07	Bestimmung von Hypophosphit und Methansulfonsäure im Zinn-Elektrolyt mittels Ionenchromatographie	B, NP
AV-A0000447 2018-09	Bestimmung von Chlorid, Sulfat, Nitrat, Phosphat und Katalysator C im Chrom-Elektrolyt mittels Ionenchromatographie	B, NP
PV 13832IC 2015-03	Bestimmung von Katalysator N und T in Chrom-Additiv mittels Ionenchromatographie	B, NP
AV-A0002346 2019-07	Bestimmung von Stabilisator C1 und C2, BluCr B und Sulfat im Tri-Chrom-Elektrolyt mittels Ionenchromatographie	В

Gültig ab: 28.03.2022 Ausstellungsdatum: 28.03.2022

Seite 6 von 15

AV-A0002741 2016-10	Bestimmung von Ammonium in aufbereiteten Spülwässern mittels Kationen-IC	В
PV-13016IC 2017-12	Bestimmung von Komplexer im Palladium-Elektrolyt mittels Kationen-IC	В
AV-B0002064 2018-09	Bestimmung von Nitrat im Nickel-Elektrolyt mittels IC-UV	В
PV-12957IC 2015-06	Bestimmung von Nitrat in Kupfer-Additiven mittels IC-UV	В

3.4 Bestimmung von organischen Inhaltsstoffen in Salzlösungen, Metalllösungen und Galvanikbädern mittels Flüssigchromatographie mit konventionellen Detektoren (UV, CA, RI, ELS) (** B und TR)

PV-12574LC 2010-09	Bestimmung von Komplexbildnern im Nickel-Konzentrat mittels LC-UV	B, NP
PV-11011LC 2017-04	Bestimmung von Glanzzusatz im Kupfer-Konzentrat mittels LC-UV	B, NP
AV-B0000444 2010-06	Bestimmung von Komplexbildnern im Nickel-Elektrolyt mittels LC-UV	B, NP
AV-B0001719 2019-07	Bestimmung von Netzmittel im Nickel-Elektrolyt mittels LC-CAD	В
AV-A0003069 2018-01	Bestimmung von Carrier im Zink/Nickel-Elektrolyt mittels LC-CAD	B, TR
AV-B0002095 2019-03	Bestimmung von Carrier im Zink/Nickel-Elektrolyt mittels LC-UV	B, TR
AV-A0002464 2016-10	Bestimmung von Neolink E3 im Kupfer-Elektrolyt mittels LC-RI	В
AV-B0001325 2017-11	Bestimmung von Polymeren im Zinn/Silber-Elektrolyt mittels LC-ELSD	В
EPA 8315A (SW-846) 1996-12	Determination of Carbonyl Compounds by High Performance Liquid Chromatography (HPLC) (Einschränkung: nur für Formaldehyd und Derivatisierung nach 7.3.1 oder 7.3.4)	В

3.5 Bestimmung von Elementen und Anionen in Salzlösungen, Metalllösungen, Galvanikbädern und Wässern mittels Photometrie (** B und TR)

AV-B0000831	Bestimmung von Nitrat im Nickel-Elektrolyt mittels	B, NP,
2007-09	Photometrie	TR
PV-14363UV 2014-07	Bestimmung von Stabilisator im Kupfer-Konzentrat mittels Photometrie	B, NP
AV-A0001866 2013-01	Bestimmung von Ammonium im sauer Zink- oder Tri-Chrom- Elektrolyt mittels Photometrie	B, TR
AV-A0000283	Bestimmung von Thioharnstoff im Zinn-Elektrolyt mittels	B, NP,
2001-09	Photometrie	TR

3.6 Bestimmung von Elementen in Salzlösungen, Metalllösungen, Galvanikbädern und Wässern mittels Atomabsorptionsspektrometrie (AAS) (** B und TR)

AV-A0001757 2014-05	Bestimmung von Eisen im Chrom-Elektrolyt mittels Atomabsorptionsspektrometrie	В
AV-A0000170 2015-11	Bestimmung von Nickel im Zn-Ni-Elektrolyt mittels Atomabsorptionsspektrometrie	B, NP, TR
AV-A0000171 2015-11	Bestimmung von Zink im Zn-Ni-Elektrolyt mittels Atomabsorptionsspektrometrie	B, NP, TR
AV-A0000156 2010-11	Bestimmung von Palladium im Aktivator mittels Atomabsorptionsspektrometrie	B, NP
PV-14544AAS 2017-01	Bestimmung von Gold (Au) in Rohstoffen mittels Atomabsorptionsspektrometrie	B, NP
PV-15606AAS 2018-05	Bestimmung von Natrium und Kalium in stromlos Kupfer- Additiven mittels Atomemissionsspektrometrie	B, NP

3.7 Bestimmung von Elementen in Salzlösungen, Metalllösungen, Galvanikbädern und Wässern mittels Atomemissionsspektrometrie mit induktiv gekoppeltem Plasma (ICP-OES) (** B und TR)

PV-10348ICP	Bestimmung von As, Ca, Cr, Mg, Ni, Pb, Sb und Sn im Kupfer-	B, NP
2006-01	Konzentrat mittels ICP-OES	

Gültig ab: 28.03.2022 Ausstellungsdatum: 28.03.2022

Seite 8 von 15

PV-14589ICP 2014-12	Bestimmung von Eisen in Reduktionslösung mittels ICP-OES	B, NP
AV-B0000340 2019-09	Semiquantitatives Screening auf 47 Elemente in Metallsalzlösungen mittels ICP-OES	B, NP, TR
PV-14511ICP 2014-10	Bestimmung von Ag, As, Cd, Co, Cr, Fe, In, Mg, Mn, Ni, Pb, Sn, Tl, Zn im Kupfer-Additiv mittels ICP - OES	B, NP, TR
PV-14043ICP 2017-08	Bestimmung von Pt, Rh und Ru in Palladium-Stammlösung mittels ICP - OES	В
PV-11069ICP 2018-08	Bestimmung von Ca, Cr, Cd, Mg, Ni, Pb, As, Sb, Sn in Kupfer- Grundelektrolyt mittels ICP-OES	B, NP
PV-14872ICP 2019-06	Bestimmung von K, Ca, Mg, Cr, Ni, As, Sb, Sn in organischen Additiven für Kupfer-Elektrolyte mittels ICP-OES	B, NP

3.8 Bestimmung von Elementen in Salzlösungen, Metalllösungen, Galvanikbädern und Reinstwässern mittels Massenspektrometrie mit induktiv gekoppelten Plasma (ICP-MS) **

PV-15526PMS 2018-05	Al, Ag, As, Ba, Ca, Cd, Co, Cr, Fe, Li, In, Mg, Mn, Pb, Sn, Si, Sr, Ti, V, W und Zn in stromlos Kupfer-Additiven mittels ICP-MS	В
AV-A0002902 2017-12	Ag, As, Bi, Cd, Fe, Ni, P, Pb, S, Sb, Se, Sn, Te, und Zn in Kupfer-Anoden mittels ICP-MS	В

3.9 Elektrochemische Verfahren zur Bestimmung von Elementen und organischen Inhaltsstoffen in Salzlösungen, Metalllösungen und Galvanikbädern (** B)

AV-A0001611 2011-12	Bestimmung von Pb und Cd im Nickel-Elektrolyt mittels Polarographie	B, NP
AV-A0002353 2015-11	Bestimmung von Bi im Nickel-Elektrolyt mittels Polarographie	B, NP
PV-14659POL 2015-10	Bestimmung von Sn(II) im kolloidalen Sn-Pd-Aktivator mittels Polarographie	NP
AV-A0001742 2012-01	Bestimmung von Einebner im Kupfer-Elektrolyt mittels Voltammetrie	B, NP

Gültig ab:

28.03.2022

Ausstellungsdatum: 28.03.2022

AV-A0001741 2012-03	Bestimmung von Glanzzusatz im Kupfer-Elektrolyt mittels Voltammetrie	B, NP
PV-9666-CVS 2019-05	Bestimmung der Aktivität von Glanzzusätzen in organischen Additiven mittels Voltammetrie	B, NP
PV-9659-CVS 2019-05	Bestimmung der Aktivität von Einebnern in organischen Additiven mittels Voltammetrie	B, NP
AV-A0000787 2018-08	Bestimmung von Korrekturlösung im Kupfer-Elektrolyt mittels Voltammetrie	B, NP

3.10 Physikalische und physikalisch-chemische Untersuchung von Rohstoffen, Salzlösungen, Metalllösungen und Galvanikbädern (** B und TR)

PV-5360-PHY 2008-06	Bestimmung der Dichte mit dem Biegeschwing- Messgerät	B, NP, TR
PV-5686-PHY 2019-01	Bestimmung des pH-Wertes	B, NP, TR

4 Untersuchung von Schichten, Schichtsystemen und Werkstoffen

4.1 Metallographische Prüfungen

DIN EN ISO 1463 2004-08	Metall- und Oxidschichten - Schichtdickenmessung - Mikroskopisches Verfahren	В
DIN EN ISO 9220 1995-01	Metallische Überzüge - Messen der Schichtdicke - Verfahren mit Rasterelektronenmikroskop	В

4.2 Schichtdickenbestimmungen mit zerstörungsfreien Verfahren

DIN EN ISO 3497	Metallische Schichten - Schichtdickenmessung -	В
2001-12	Röntgenfluoreszenz-Verfahren	

43 Chemisch - physikalische Prüfungen zur Schichtdickenmessung an vernickelten Bauteilen mittels STEP-Test und an verchromten Bauteilen zur quantitativen Erfassung von Mikrorissen oder Mikroporen *

DIN EN 16866 2018-01	Metallische und andere anorganische Überzüge - Schichtpotentialmessung von galvanischen Mehrfach- Nickelschichtsystemen (STEP-Test)	В
ASTM B 764 2004-04	Standard Test Method for Simultaneous Thickness and Electrode Potential Determination of Individual Layers in Multilayer Nickel Deposit (STEP - Test)	В
DIN 53100 2007-06	Metallische Überzüge - Galvanische Nickel-Chrom- und Kupfer- Nickel-Chrom-Überzüge auf Kunststoffen	В
ASTM B 604 1991	Standard Specification for Decorative Electroplated Coatings of Copper Plus Nickel Plus Chromium on Plastics	В

4.4 Korrosionsuntersuchungen

4.4.1 Konstantklima Salzsprühnebelprüfungen an Schrauben, Verbindungselementen, Blechen, Bauteilen und dekorativ beschichteten Teilen zur Bestimmung qualitativer Aussagen *

DIN EN ISO 9227 2017-07	Korrosionsprüfungen in künstlichen Atmosphären - Salzsprühnebelprüfungen	B, TR
ASTM B 368 2009	Standard Test Method for Copper-Accelerated Acetic Acid-Salt Spray (Fog) Testing (CASS Test)	B, TR
ASTM B 117 2019	Standard Practice for Operating Salt Spray (Fog) Apparatus	B, TR

4.4.2 Kondenswasserklima-Test an Schrauben, Verbindungselementen, Blechen, Bauteilen und dekorativ beschichteten Teilen zur Bestimmung qualitativer Aussagen *

DIN EN ISO 6270-2 2018-04	Beschichtungsstoffe - Bestimmung der Beständigkeit gegen Feuchtigkeit - Teil 2: Kondensation	B, TR
ASTM D 2247 2015	Prüfung von Beschichtungen auf Wasserbeständigkeit bei 100% relativer Feuchte	TR

4.4.3 Kesternichtest an Schrauben, Verbindungselementen, Blechen, Bauteilen und dekorativ beschichteten Teilen zur Bestimmung qualitativer Aussagen *

DIN EN ISO 6988

Metallische und andere anorganische Überzüge, Prüfung mit
1997-03

Schwefeldioxid unter allgemeiner Feuchtigkeitskondensation

DIN 50018

Prüfung im Kondenswasser-Wechselklima mit
2013-05

Schwefeldioxidhaltiger Atmosphäre

ISO 22479

Korrosion von Metallen und Legierungen - Prüfung mit
2019-05

Schwefeldioxid in feuchter Atmosphäre (fixed gas method)

4.5 Mechanisch-technologische Prüfungen

4.5.1 Bestimmung der Abschälfestigkeit mittels Zugversuch an verkupferten oder dekorativ beschichteten Bauteilen *

ASTM B 533 Standard Test Method for Peel Strength of Metal Electroplated B 1985 Plastics

4.5.2 Drehmoment/Vorspannkraft-Versuch an blanken, verzinkten oder vernickelten Schrauben oder Muttern zur Bestimmung der Anzieheigenschaften *

DIN EN ISO 16047 Verbindungselemente - Drehmoment/Vorspannkraft-Versuch TR 2013-01

4.5.3 Geometrische Messungen

DIN EN ISO 4288 Geometrische Produktspezifikationen (GPS) - Oberflächen- TR
1998-04 beschaffenheit: Tastschnittverfahren - Regeln und Verfahren
für die Beurteilung der Oberflächenbeschaffenheit

4.5.4 Härteprüfung nach Vickers

DIN EN ISO 6507-1 Metallische Werkstoffe - Härteprüfung nach Vickers - TR 2018-07 Teil 1: Prüfverfahren (Einschränkung: *nur HV5 - HV30*)

Gültig ab: 28.03.2022 Ausstellungsdatum: 28.03.2022

Seite 12 von 15

5 Prüfungen gemäß Herstellervorschriften

Volvo STD 423-0014 (ACT) 2015-01	Accelerated corrosion test - Atmospheric corrosion	B, TR
Volvo VCS 1027, 1449 (ACT II) 2014-02	Accelerated corrosion test, version II - ACT II	B, TR
Ford CETP 00.00-L-467 2009-03	Global Laboratory Accelerated Cyclic Corrosion Test	B, TR
GMW 14872 2018-10	Cyclic Corrosion Laboratory Test	B, TR
VW PV 1210 2010-02	Karosserie und Anbauteile, Korrosionsprüfung	B, TR
VW PV 1209 2016-02	Anbauteile mit einer Zink-oder Zinklegierungsbeschichtung und Aluminiumanbauteile Korrosionsprüfung (Klima-Korrosionswechsel-Test)	B, TR
Renault D17 2028 -C (ECC1) 2007-10	Corrosion test by automatic change of phases of salt spray, drying and humidity	B, TR
VW PV 1063 2018-11	Verchromte Oberflächen - Bestimmung der Mikroporendichte	В
Renault D17 1058 -K 2014-11	Neutral Salt Spray Test	B, TR
VW PV 1200 2004-10	Fahrzeugteile, Prüfung der Klimawechselfestigkeit (+80/-40) °C	B, TR
GMW 14668 2019-01	Minimum Performance Requirements for Decorative Chromium Plated Plastic Parts	B, TR
GMW 3044 2017-10	Material Specification: Zinc-Plating	TR
GMW 3359 2019-02	Material Specification: Non-Electrolytically Applied Zinc-Rich Coating	TR
GMW 4700 2014-02	Material Specification: Zinc Alloy Plating	TR

Gültig ab: 28.03.2022 Ausstellungsdatum: 28.03.2022

Seite 13 von 15

GMW 16730 2017-11	Material Specification: Cosmetic Coating, Black Zinc-Nickel Based	TR
Ford WZ 102 2019-02	Fastener - Torque/clamp force testing - Standard Conditions	TR
Renault 01-50-005 -H 2017-03	Fasteners coefficient of friction test	TR
VW 01131 2018-03	Ermittlung von Reibungszahlen - Praxis- und montageorientierte Prüfung	TR
MBN 10544 2019-01	Prüfung des Drehmoment/Vorspannkraft-Verhaltens	TR
6 Physikalische Untersuc	hungen von wässrigen und organischen Lacksystemen	
DIN EN ISO 13736 2013-08	Bestimmung des Flammpunktes - Verfahren mit geschlossenem Tiegel nach Abel	TR
DIN EN ISO 3251 2019-09	Beschichtungsstoffe und Kunststoffe - Bestimmung des Gehaltes an nichtflüchtigen Anteilen	TR
DIN EN ISO 2431 2012-03	Beschichtungsstoffe - Bestimmung der Auslaufzeit mit Auslaufbechern (Einschränkung: <i>nur Cup3 und auch <30s und >100s</i>)	TR
DIN ISO 2811-1 2016-08	Beschichtungsstoffe - Bestimmung der Dichte - Teil 1: Pyknometer-Verfahren	TR
DIN EN ISO 2409 2013-06	Beschichtungsstoffe - Gitterschnittprüfung	TR

Verwendete Abkürzungen:

ASTM American Society for Testing and Materials

AV Hausverfahren der Atotech Deutschland GmbH & Co. KG

Deutsches Institut für Normung e. V.

EN Europäische Norm Ford WZ xxx Ford Prüfvorschrift Ford CETP xx.xx-x-xxx Ford Prüfvorschrift

GMW xxxx(x) General Motors Worldwide Engineering Standards

IFC International Electrotechnical Commission
ISO International Organization for Standardization

LCK Hach Küvetten-Test-System

PHY Hausverfahren der Atotech Deutschland GmbH & Co. KG
PV Hausverfahren der Atotech Deutschland GmbH & Co. KG

Renault D17 xxxx-x
Renault Prüfvorschrift
Renault xx-xx-xxx-x
Renault Prüfvorschrift
Volvo VCS xxxx
Volvo Prüfvorschrift
Volvo STD xxx-xxxx
Volvo Prüfvorschrift

VW (PV) xxxx(x) Volkswagen Prüfvorschrift

Gültig ab: 28.03.2022 Ausstellungsdatum: 28.03.2022

Seite 15 von 15